Female Scientists


Female Scientists grants 2016


For the sixth straight year, the Hasselblad Foundation is allocating funding to female researchers in the natural sciences.

This year, the SEK 1 million grants have been awarded to Merima Hasani, assistant professor at the department of Chemistry and Chemical Engineering, Chalmers University of Technology, and Ulrika Islander, researcher at the Department of Rheumatology and Inflammation Research, University of Gothenburg.

‘I just screamed, it was so awesome. It’s a prestigious award and a great acknowledgement of me as a researcher. It’s also a grant that offers a lot of freedom,’ says Islander.


Awarded for Her Research on Oestrogen and the Immune System

The female sex hormone oestrogen is often associated with breast cancer. But the hormone may also have a protective effect in diseases such as arthritis and osteoporosis. Ulrika Islander, immunologist at the University of Gothenburg, studies how oestrogen affects the immune system and various immune cells. She has just been awarded SEK 1 million from the Hasselblad Foundation.


When the phone rang and Ulrika Islander understood that she is one of two recipients of the Hasselblad Foundation’s special grant for female scientists, she almost lost control of herself.

‘I just screamed, it was so awesome. It’s a prestigious award and a great acknowledgement of me as a researcher. It’s also a grant that offers a lot of freedom.’

In June, Islander and her family will leave for Switzerland, where she will spend one year as a visiting researcher at the prestigious Institute of Immunobiology, Medizinisches Forschungszentrum at Kantonsspital St Gallen.

‘It’s a great opportunity. I feel so excited about the new possibilities to expand my international scientific networks and further develop myself as a scientist and research leader.’


Oestrogen Protects against Disease

Islander carries out research in the intersection between endocrinology and immunology, and she is trying to understand how the two systems interact. A little over a decade ago, she wrote her doctoral thesis on how signalling through oestrogen receptors affects various cells in the immune system.

She is particularly interested in a specific type of cell called Th17. This is a type of immune cell that produces a protein (IL17) that in turn serves an important function in the body’s defence against certain bacteria and fungal infections.

‘But these cells also trigger the development of some diseases, such as rheumatoid arthritis and osteoporosis. These diseases are closely interconnected with each other. Many people with rheumatoid arthritis are also affected by osteoporosis,’ she says.

Right now, she is studying how oestrogen affects the immune system and various immune cells, such as Th17. Her research team was recently able to show that oestrogen seems to inhibit the ability of these immune cells to move from lymph nodes to joints.

‘We have data to suggest that this transfer mechanism is affected by oestrogen. But we need more experiments to be able to confirm this. It is important to stress that we are dealing with basic research and that we still have a long way to go.’


Learn New Methods

If the finding turns out to be correct and things go Islander’s way, the vision is for her research to contribute to the development of new treatment methods, where the immunological mechanisms involved in the protective effect of oestrogen in rheumatoid arthritis and osteoporosis can be used as targets for new treatments.

‘But a lot of work remains and it will take a long time before patients can benefit from our research. Again, we are dealing with basic research and trying to understand the beneficial effects of oestrogen on the immune system and the mechanisms involved. Once this has been accomplished, we will be able to move on and focus on specific proteins and ultimately develop effective treatment methods,’ says Islander.

At the moment, she is looking forward to her year as a visiting researcher in Switzerland and the opportunity to learn new advanced immunological methods that will help move her research forward.

‘When I return, I want to implement the tools and methods at our lab in Gothenburg and continue working with the specific issues from here,’ says Islander.


Building Blocks from Trees Provide
Materials of the Future


More efficient use of trees could drastically reduce our dependence on fossil resources and oil-based products. Merima Hasani, researcher at Chalmers University of Technology, is developing chemical tools for extracting and modifying building blocks from trees. She has just been awarded a research grant worth SEK 1 million from the Hasselblad Foundation.


Merima Hasani is assistant professor at the department of Chemistry and Chemical Engineering, Chalmers University of Technology. She works in an interdisciplinary field where cooperation and international engagement are of key importance.

‘The grant will make a major difference, I’m so happy! The moment I found out about it, I could see how the doors to long-awaited collaborations and contacts with
internationally renowned research groups suddenly opened.’

She was born in Bosnia and came with her family to Sweden in 1995. She attended upper secondary school in Varberg and was interested in the natural sciences and chemistry already as a kid.

‘I knew early on that I wanted to study at Chalmers.’


Biomaterials of the Future

The transition to a bio-based and sustainable society is urgent. According to Hasani, we could become much better at using the widely available biomass from trees in this transition process.

‘Take for example cellulose fibres. You can do so much more with them than just produce paper products and textiles. Trees have an abundance of structures and building blocks that could become useful in the development of the next generation of biomaterials.’

Examples of possible areas in which the building blocks of trees (small molecules, polymers, nanostructures and fibres) may become useful include the production of bio-plastics, composites, carbon fibre materials, adhesives, cosmetics and medicines.

‘Cellulose structures are already being used in drug development. This is a big and exciting area of development,’ says Hasani.


Does this imply a risk of mass felling of trees in order to access the building blocks?

‘No, I don’t think so. We won’t need to use a lot more trees than today. Rather, it’s a matter of using the trees more efficiently. Today, we cut down trees to produce paper and energy. But we could get so much more out of the trees if we really took advantage of all the components and structural variations in the cell walls of the trees.’


Decouple the Building Blocks

Merima Hasani’s goal is to develop chemical tools that are able to decouple the building blocks and facilitate better and wider utilisation of forest biomass.

‘We need more knowledge about how to gently decouple the complex and robust structures formed throughout evolution to enable better and broader utilisation of the building blocks.’

Merima Hasani is looking forward to using the grant to connect with reputable research groups in areas such as material design, polymer functionalisation and advanced microscopic methods.

‘I’ll visit research groups in Austria, Germany and France to seek knowledge and inspiration and create valuable contacts. The overall objective is to develop new materials from trees and the intermediate goal is to develop new methods that can help us along the way. It’s a long but exciting journey.’